Propuesta de Examen de Diagnóstico

Posgrado Conjunto en Ciencias Matemáticas Mayo 2025

Redactar con claridad, enumerar las hojas e incluir todos los argumentos, aunque sean parciales.

- 1. Sea dada la función $f(x) = x^3 + \operatorname{senh} x + 2$. Recordemos que $\operatorname{senh} x = \frac{e^x e^{-x}}{2}$.
 - a) Muestra que $f: \mathbb{R} \to \mathbb{R}$ posee una función inversa.
 - b) Denotemos mediante h la inversa de f. Hallar los valores numéricos h(2) y h'(2).
- 2. Sea $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & -1 & 4 \end{pmatrix}$. Se define la transformación $\star : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ determinada por $u \star v = u^T A v$ para todo $u, v \in \mathbb{R}^3$, donde u^T denota la transpuesta de u. Muestra que \star es un producto escalar (o producto interno) en \mathbb{R}^3 .
- 3. Considera $\lim_{x \to \infty} \frac{x \sin x}{2x + \sin x}$.
 - a) ¿Es posible aplicar la regla de L'Hôpital para calcular este límite? Justifica tu respuesta.
 - b) Calcula el límite.
- 4. Sean v_1, v_2, v_3, v_4 vectores en \mathbb{R}^3 cuyos productos punto satisfacen $v_i \cdot v_j < 0$ si $i \neq j$.
 - a) Da un ejemplo de cuatro vectores que cumplan esta propiedad.
 - b) Probar que si cuatro vectores cumplen esta propiedad, entonces cualesquiera tres de ellos forman una base de \mathbb{R}^3 .
- 5. Responde lo siguiente.
 - a) Escribe la definición formal de elipse.
 - b) Usando cálculo, encuentra la fórmula para el área de una elipse.
- 6. Sea $f: \mathbb{C} \to \mathbb{C}$ dada por $f(z) = az + b\overline{z}$, donde $a, b \in \mathbb{C}$.
 - a) Mostrar que f determina una función $\mathbb{R}\text{-lineal}.$
 - b) Probar que f no es invertible si y solo si |a| = |b|.

- 7. Sean a > 0 y $f(x) = \int_0^{ax} e^{-\frac{t^2}{2}} dt$. Hallar $\lim_{x \to 0} \frac{f(x) \frac{1}{b} \operatorname{sen}(bx)}{x^3}$, con $b \neq 0$.
- 8. Sea X un conjunto. Por $K(X,\mathbb{R})$ denotamos al espacio vectorial de las funciones de X a \mathbb{R} . Dado $A \subseteq X$, definimos el conjunto $F(A) = \{ f \in K(X,\mathbb{R}) \mid \forall b \notin A (f(b) = 0) \}$.
 - a) Demuestra que F(A) es un subespacio vectorial de $K(X,\mathbb{R})$.
 - b) Demuestra que si $\{P_1, ..., P_n\}$ es una partición de X, entonces $K(X, \mathbb{R})$ es la suma directa de $F(P_1), ..., F(P_n)$.
 - c) Demuestra que si X es finito, entonces $K(X,\mathbb{R})$ tiene dimensión finita y encuentra una base.
- 9. Una partícula se mueve en el eje x de manera que su posición al tiempo t es una función diferenciable x(t) y su velocidad satisface $x' = x^2$.
 - a) Si la partícula comienza su movimiento en x=1 a tiempo t=0, ¿cuánto tiempo tarda en recorrer el semieje $[1,\infty)$ en el eje de las x?
 - b) Si la partícula comienza en x=-1 a tiempo t=0, ¿cuánto tiempo tarda en llegar a x=0? El recorrido es en el eje de las x.